LANGFRISTSZENARIEN FÜR DIE TRANSFORMATION DES ENERGIESYSTEMS IN DEUTSCHLAND

Orientierungsszenarien O45

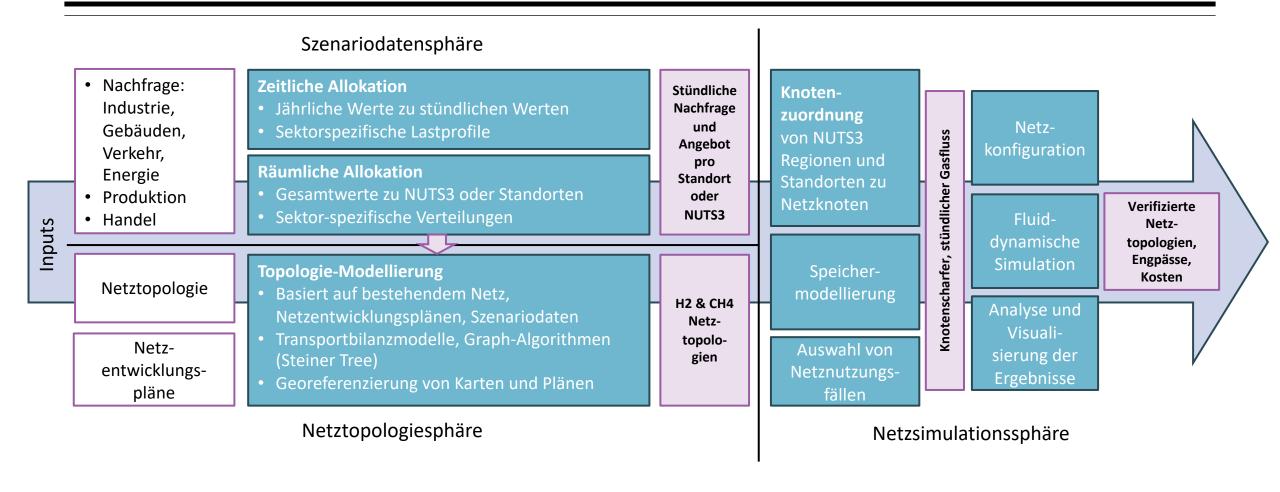
Webinar der Orientierungsszenarien | 02. Juli 2024

Maximilian Evers, Berkan Kuzyaka, Prof. Dr. Joachim Müller-Kirchenbauer

Entwicklung der Gasnetzinfrastruktur in treibhausgasneutralen O45-Szenarien

→ O45-Strom→ O45-H2

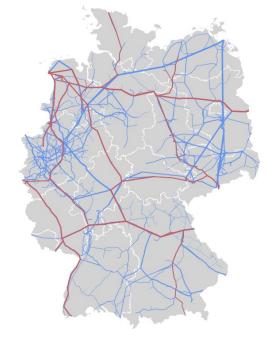
Agenda


- Überblick zu den Modellierungsansätzen und wichtigen Annahmen
- Entwicklung der deutschen Gastransportnetzinfrastrukturen für Wasserstoff und Erdgas
- Strömungsmechanische Validierung der Gastransportnetzinfrastrukturen für Wasserstoff und Erdgas
- Einordnung des Infrastrukturbedarfs sowie der annuitätischen Gesamtkosten

Leitungsscharfe Modellierung Transportnetze -Übersicht der Methodik

Leitungsscharfe Modellierung Transportnetze – Für jedes Szenario zwei getrennte Gasnetz-Topologien

- Wasserstoffnetz wird vorrangig aus umgewidmeten Erdgas-Leitungen gebildet
 - Beachtung separater Transportaufgaben CH4 und H2 für die Gewährleistung der Transportaufgabe
 - Umfang des Wasserstoffnetzes vom konkreten Szenario abhängig



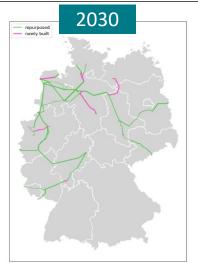
- Nachfragestandorte (szenarioabhängig)
- (Fast) alle bestehenden Kavernenspeicher
- Interkonnektoren wie in Enertile berechnet
- Effiziente Verbindung der Interkonnektoren unter
 Verwendung paralleler Infrastrukturen und nachgelagertes
 Einfügen der Speicher

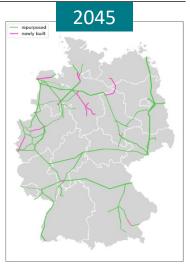
Entwicklung H2- und CH4-Transportnetze

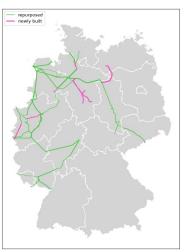
- Aufteilung Ursprungsnetz in zwei zusammenhängende
 Topologien
 - H2-Transportnetz
 - Schrittweise reduziertes Methan-Netz

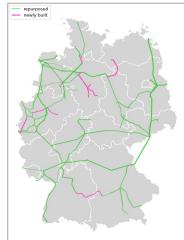
Agenda

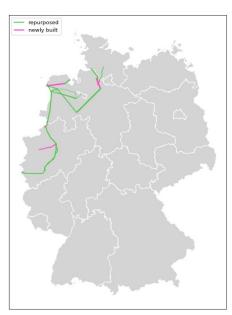
- Überblick zu den Modellierungsansätzen und wichtigen Annahmen
- Entwicklung der deutschen Gastransportnetzinfrastrukturen für Wasserstoff und **Erdgas**
- Strömungsmechanische Validierung der Gastransportnetzinfrastrukturen für Wasserstoff und **Erdgas**
- Einordnung des Infrastrukturbedarfs sowie der annuitätischen Gesamtkosten

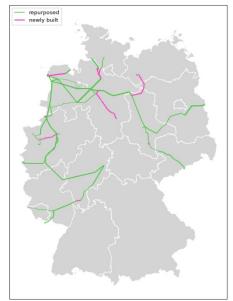


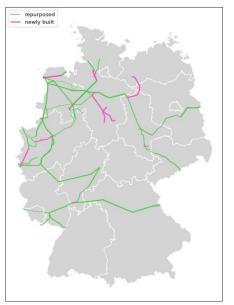

Gesamtüberblick der Wasserstoff-Topologieentwicklung Detailänderungen in den Topologien je nach Szenariodefinition

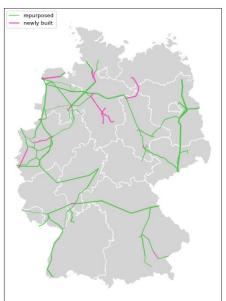

Ergebnisse und Einordnung

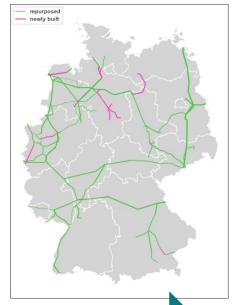

- Die Topologien basieren auf den jeweiligen
 Topologien der Szenarien T45-Strom* und T45-H2
- Die verschiedenen Szenarien haben unterschiedliche Anforderungen an das Netz, was zu unterschiedlichen Längen und Umwidmungsraten sowie zu einigen Detailänderungen führt (z. B. Verbindung nach Polen in O45-Strom)
- Schwerpunkte Ein- und Ausspeisungen: Industrie,
 Kraftwerke, Produktion, Im-/Exporte und Speicher
- Transportnetze basieren auf einer gesamteuropäischen Optimierung; tatsächliche Netze könnten größer ausfallen
- Tatsächliche Importkorridore sind ebenfalls noch unsicher → Topologie ermöglicht Flexibilität

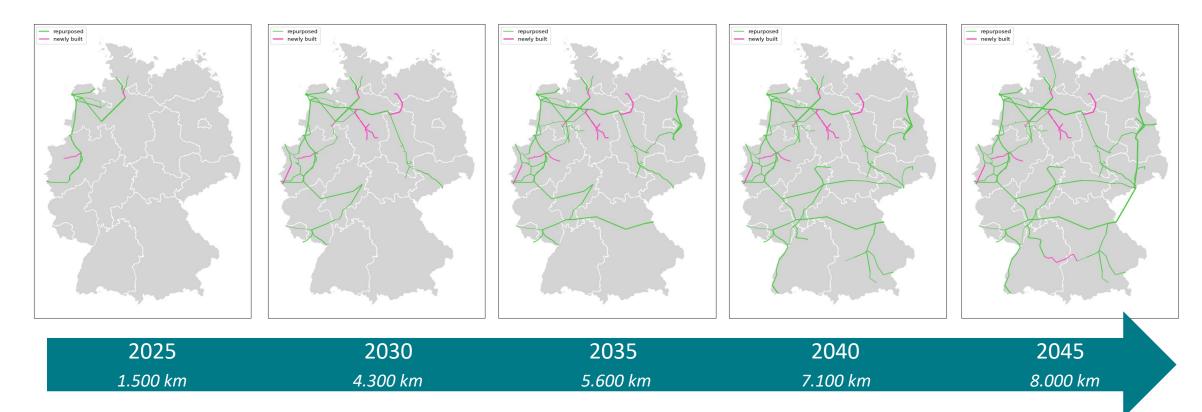






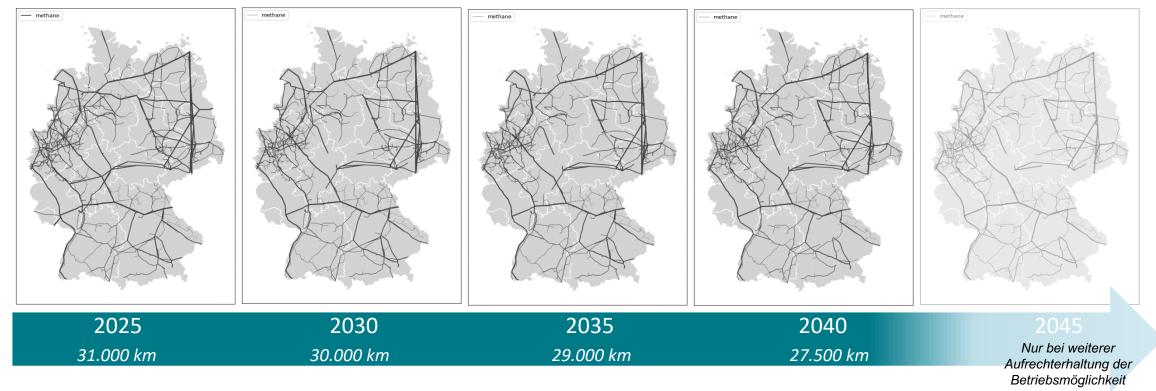

Gesamtüberblick der Wasserstoff-Topologieentwicklung O45-Strom Topologie etwas kleiner als T45-Strom*


- Alle Szenarien basieren auf den T45-Grundtopologien, die vor der Kernnetz-Veröffentlichung modelliert wurden
- Unterschiedliche Umwidmungsraten und einige Detailänderungen aufgrund verschiedener Anforderungen


2025	2030	2035	2040	2045
1.500 km	3.800 km	5.000 km	6.600 km	7.200 km

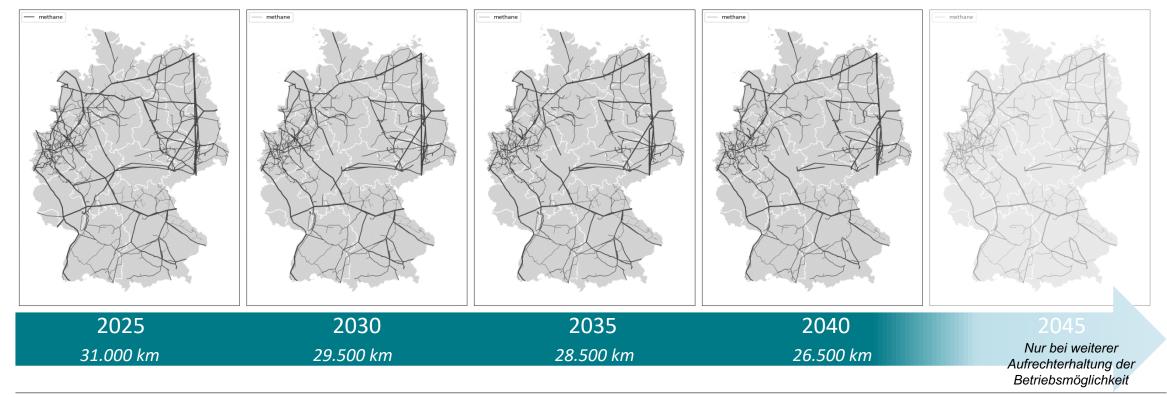
Gesamtüberblick der Wasserstoff-Topologieentwicklung O45-H2 Topologie kleiner als T45-H2

- Alle Szenarien basieren auf den T45-Grundtopologien, die vor der Kernnetz-Veröffentlichung modelliert wurden
- Unterschiedliche Umwidmungsraten und einige Detailänderungen aufgrund verschiedener Anforderungen



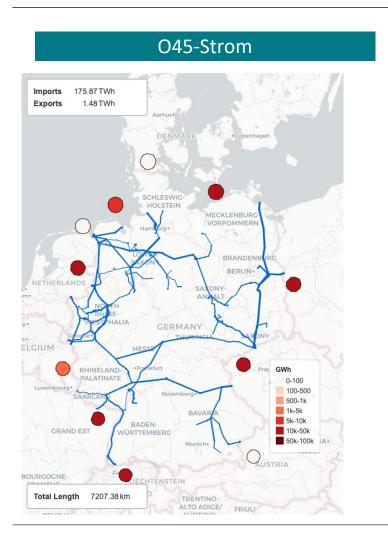
Gesamtüberblick der Erdgas-Topologieentwicklung O45-Strom

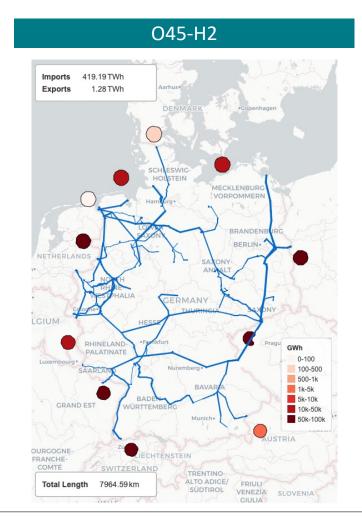
- Reduktion des Erdgasnetzes aufgrund rückläufiger Erdgasbedarfe ermöglicht Umwidmung von Leitungen auf Wasserstoff
- Für die Gewährleistung der Erdgas-Versorgungsaufgabe werden je nach Anforderungen der Szenarien geringfügig Methanpipelines neu gebaut



Gesamtüberblick der Erdgas-Topologieentwicklung O45-H2

- Reduktion des Erdgasnetzes aufgrund rückläufiger Erdgasbedarfe ermöglicht Umwidmung von Leitungen auf Wasserstoff
- Für die Gewährleistung der Erdgas-Versorgungsaufgabe werden je nach Anforderungen der Szenarien geringfügig Methanpipelines neu gebaut

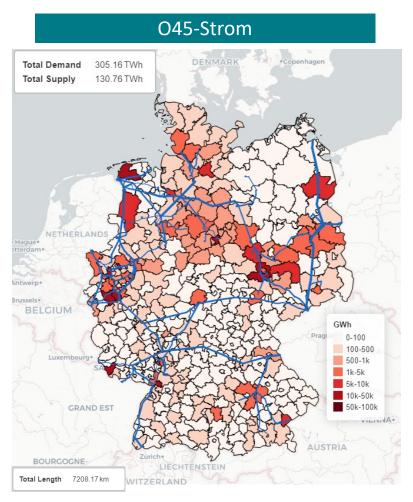


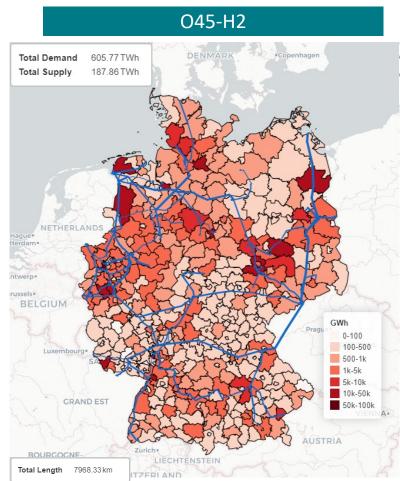


Neuerungen in den O45-Szenarien Importe O45-H2 2045 deutlich höher als in O45-Strom

O45-Strom

- Exporte gering
- Nahezu alle
 Grenzübergangspunkte angeschlossen
- Größte Importmengen aus Polen in Größenordnung von 50 TWh

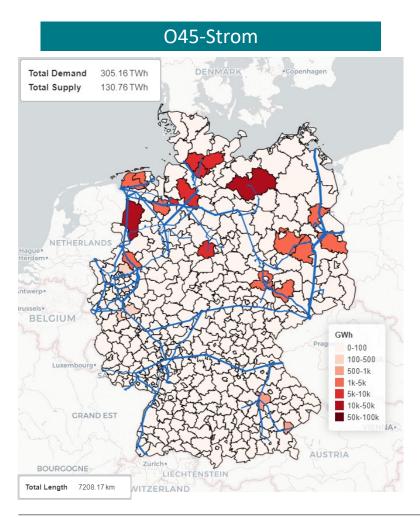

- Exporte gering
- Alle Grenzübergangspunkte angeschlossen
- Größte Importmengen aus den Niederlanden in Größenordnung von 100 TWh

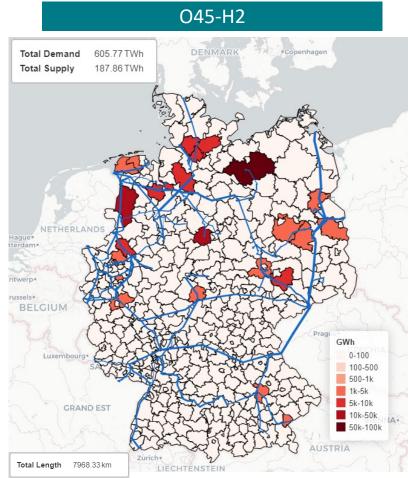


Neuerungen in den O45-Szenarien Doppelt so große Wasserstoffnachfrage in O45-H2 2045

O45-Strom

- Nachfragecluster sind alle an das Wasserstofftransportnetz angebunden
- Nachfrageschwerpunkte in der nördlichen Hälfte Deutschlands


- Flächendeckende Nachfrage von Wasserstoff bedingt durch Einsatz im Wärmesektor
- Oft geringe Nachfragen und durch keine direkte Anbindung an das Wasserstofftransportnetz
- Anbindung durch einzelne Verteilnetzleitungen

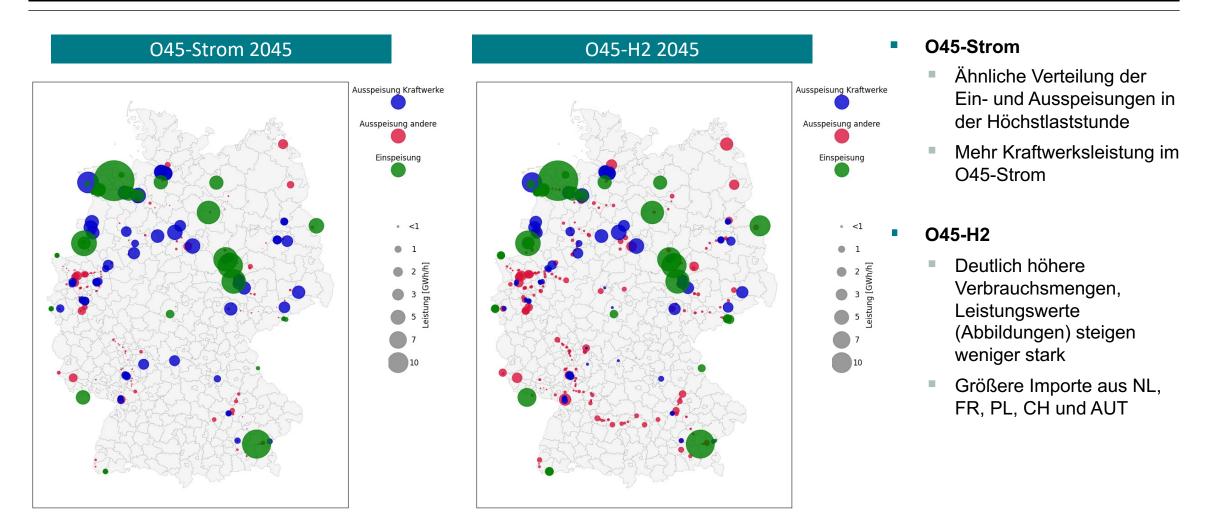


Neuerungen in den O45-Szenarien Etwa 45 % höheres Wasserstoffangebot in O45-H2 2045

O45-Strom

- Im Jahr 2045 werden etwa 130 TWh Wasserstoff inländisch durch Elektrolyse erzeugt
- Nahezu alle Regionen sind an das Wasserstofftransportnetz angeschlossen

- Anbindung von weiteren Elektrolysestandorten
- Elektrolyse erzeugt etwa 60TWh mehr Wasserstoff



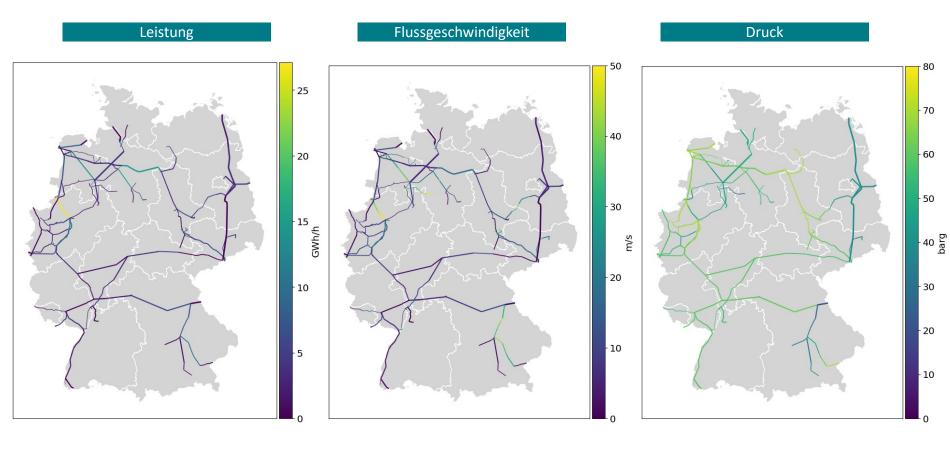
Neuerungen in den O45-Szenarien Mehr Wasserstoffrückverstromung in O45-Strom

Agenda

- Überblick zu den Modellierungsansätzen und wichtigen Annahmen
- Entwicklung der deutschen Gastransportnetzinfrastrukturen für Wasserstoff und Erdgas
- Strömungsmechanische Validierung der Gastransportnetzinfrastrukturen für Wasserstoff und Erdgas
- Einordnung des Infrastrukturbedarfs sowie der annuitätischen Gesamtkosten

Für alle Szenarien können Wasserstoffnetz-Topologien gebildet werden, die die Versorgungsaufgaben erfüllen

Szenario	O45-Strom			O45-H2						
Netznutzungsfall/Jahr	25	30	35	40	45	25	30	35	40	45
Gesamtsystemlast Maximal										
Gesamtnachfrage Minimal										
Verteilungsnetzausspeisung Maximal										
Kraftwerksausspeisung Maximal										
Industrieausspeisung Maximal										
Importe Maximal										
Speicherausspeisung Maximal										
Produktion Maximal										
Verteilungsnetzausspeisung Minimal										
Kraftwerksausspeisung Minimal										
Industrieausspeisung Minimal										
Importe Minimal										
Speicherausspeisung Minimal										
Produktion Minimal										



O45-Strom: Simulation H2-2045 Für "Gesamtsystemlast Maximal"

Ergebnisse

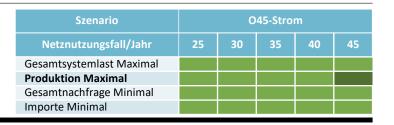
- Versorgungsaufgabe für 2045 kann erfüllt werden
- Länge des Wasserstoffnetzes ca.7.200 km (über 90% aus Umwidmung)

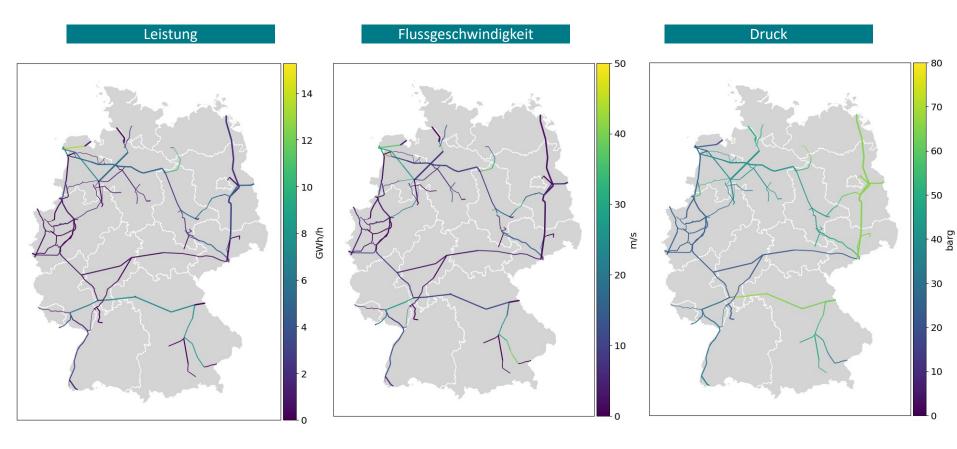
Einordnung

- Leistungsflüsse bis25 GWh/h in einzelnenLeitungen
- Flussgeschwindigkeiten bis etwa 45 m/s
- Drücke bis etwa 80 bar

Schlussfolgerung

Aufbau eines
 Wasserstoffnetzes
 weitgehend durch
 Umwidmung bestehender
 Erdgaspipelines





O45-Strom: Simulation H2-2045 Für "Produktion Maximal"

Ergebnisse

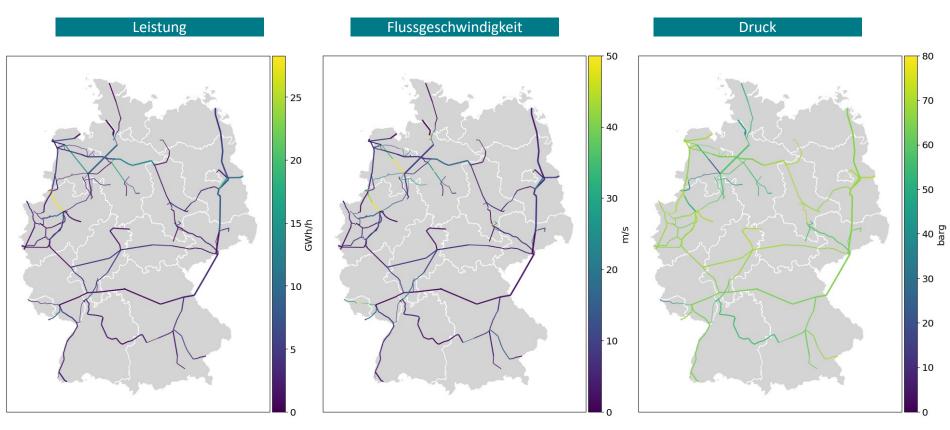
- Versorgungsaufgabe für 2045 kann erfüllt werden
- Länge des Wasserstoffnetzes ca.7.200 km (über 90% aus Umwidmung)

Einordnung

- Leistungsflüsse bis 12 GWh/h in einzelnen Leitungen
- Flussgeschwindigkeiten bis etwa 35 m/s
- Drücke bis etwa 70 bar

Schlussfolgerung

Aufbau eines
 Wasserstoffnetzes
 weitgehend durch
 Umwidmung bestehender
 Erdgaspipelines



O45-H2: Simulation H2-2045 Für "Gesamtsystemlast Maximal"

Ergebnisse

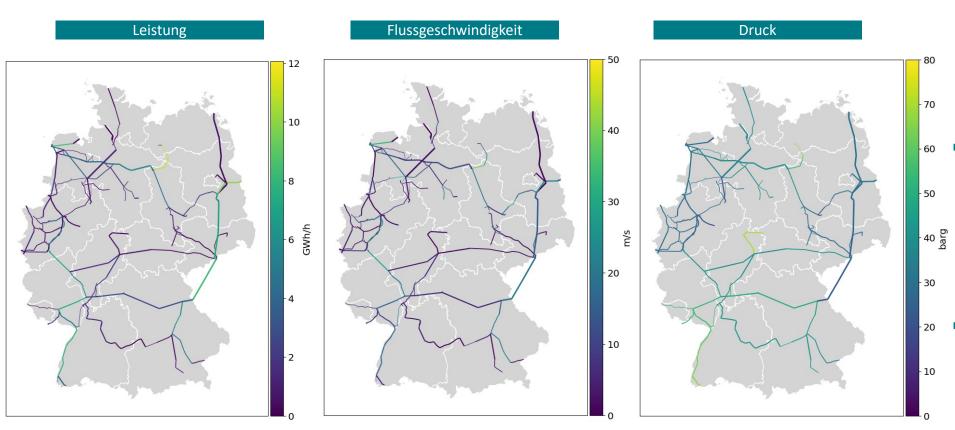
- Versorgungsaufgabe für 2045 kann erfüllt werden
- Länge des Wasserstoffnetzes ca.8.000 km (über 90% aus Umwidmung)

Einordnung

- Leistungsflüsse bis 25 GWh/h in einzelnen Leitungen
- Flussgeschwindigkeiten bis etwa 45 m/s
- Drücke bis etwa 80 bar

Schlussfolgerung

Aufbau eines
 Wasserstoffnetzes
 weitgehend durch
 Umwidmung bestehender
 Erdgaspipelines



O45-H2: Simulation H2-2045 Für "Importe Minimal"

Szenario	O45-H2								
Netznutzungsfall/Jahr	25	30	35	40	45				
Gesamtsystemlast Maximal									
Produktion Maximal									
Gesamtnachfrage Minimal									
Importe Minimal									

Ergebnisse

- Versorgungsaufgabe für 2045 kann erfüllt werden
- Länge des Wasserstoffnetzes ca.8.000 km (über 90% aus Umwidmung)

Einordnung

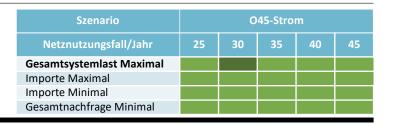
- Leistungsflüsse bis 12 GWh/h in einzelnen Leitungen
- Flussgeschwindigkeiten bis etwa 35 m/s
- Drücke bis etwa 70 bar

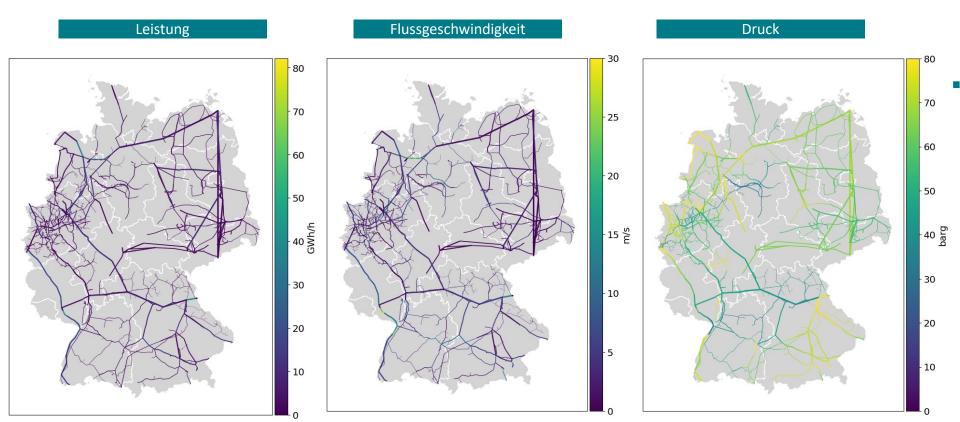
Schlussfolgerung

Aufbau eines
 Wasserstoffnetzes
 weitgehend durch
 Umwidmung bestehender
 Erdgaspipelines

Für alle Szenarien verbleiben Erdgasnetz-Topologien, die die Versorgungsaufgaben erfüllen

Szenario	O45-Strom			O45-H2						
Netznutzungsfall/Jahr	25	30	35	40	45	25	30	35	40	45
Gesamtsystemlast Maximal										
Gesamtnachfrage Minimal										
Verteilungsnetzausspeisung Maximal										
Kraftwerksausspeisung Maximal										
Industrieausspeisung Maximal										
Importe Maximal										
Speicherausspeisung Maximal										
Andere Maximal										
Verteilungsnetzausspeisung Minimal										
Kraftwerksausspeisung Minimal										
Industrieausspeisung Minimal										
Importe Minimal										
Speicherausspeisung Minimal										
Andere Minimal										





O45-Strom: Simulation CH4-2030 Für "Gesamtsystemlast Maximal"

Ergebnisse

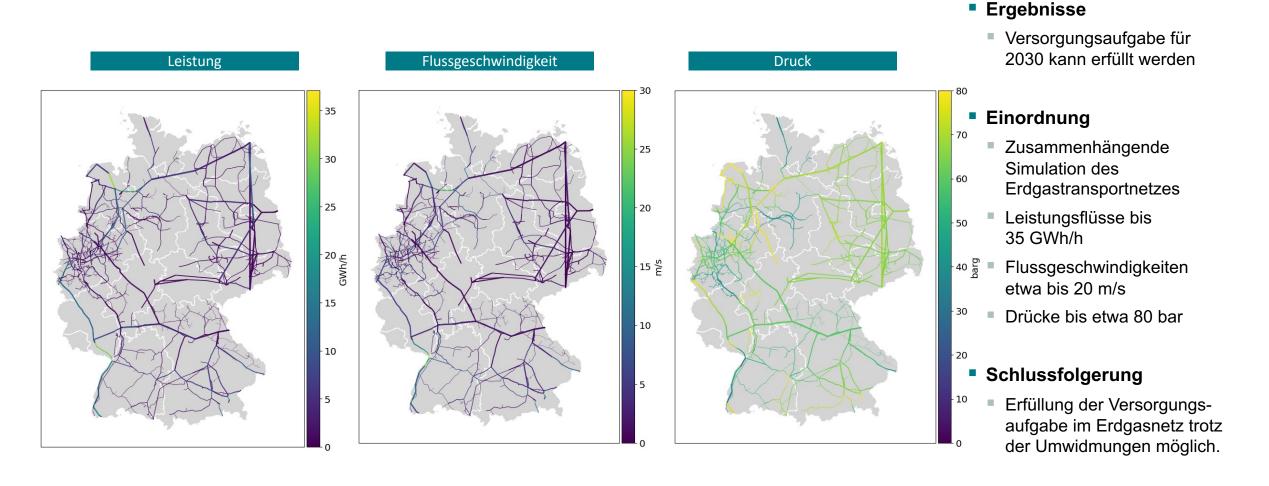
 Versorgungsaufgabe für 2030 kann erfüllt werden

Einordnung

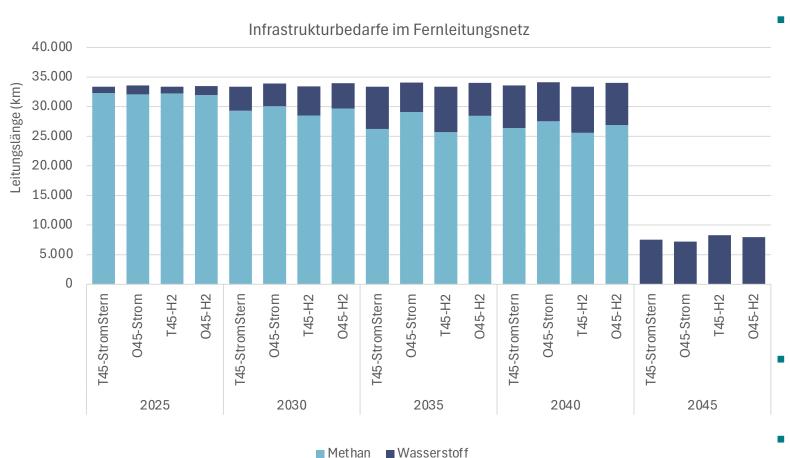
- Zusammenhängende Simulation des Erdgastransportnetzes
- Leistungsflüsse bis 40 GWh/h
- Flussgeschwindigkeiten etwa 10-15 m/s
- Drücke bis etwa 80 bar

Schlussfolgerung

 Erfüllung der Versorgungsaufgabe im Erdgasnetz trotz der Umwidmungen möglich



O45-H2: Simulation CH4-2030 Für "Gesamtsystemlast Maximal"


Agenda

- Überblick zu den Modellierungsansätzen und wichtigen Annahmen
- Entwicklung der deutschen Gastransportnetzinfrastrukturen für Wasserstoff und Erdgas
- Strömungsmechanische Validierung der Gastransportnetzinfrastrukturen für Wasserstoff und Erdgas
- Einordnung des Infrastrukturbedarfs sowie der annuitätischen Gesamtkosten

Analyse Fernleitungsnetze 1/4 Wasserstoffnetz gegenüber dem Methannetz deutlich reduziert

Ergebnisse

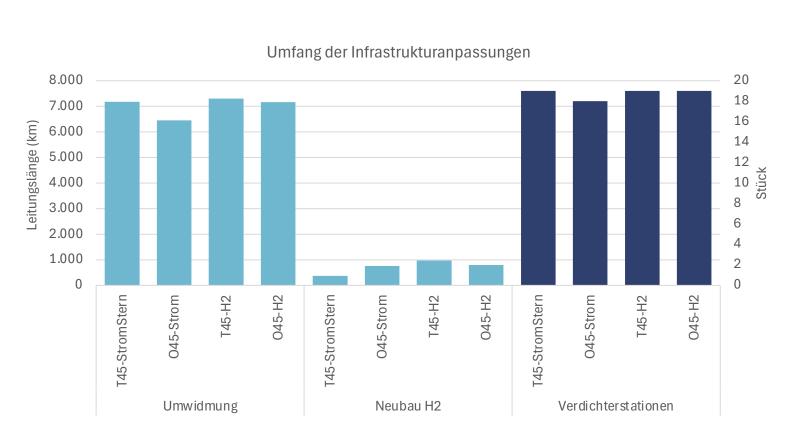
- Umwidmungen des CH4-Transportnetzes in beiden Szenarien in ähnlicher Größenordnung
- Geringe Variation zwischen den Topologien aufgrund der Szenarioanforderungen
- Vergleichsweise geringer
 Infrastrukturbedarf als heute
- Umfangreiches H2-Netz ab 2035 in beiden Szenarien
- Methannetz im Jahr 2045 nur bei Aufrechterhaltung der Betriebsmöglichkeit

Einordnung

Umfang des H2-Netzes im Jahr 2045 in beiden Szenarien ca. 7.200 bis 8.000 km

Schlussfolgerung

Wasserstofftransportnetz zentraler
 Baustein in allen Szenarien



Analyse Fernleitungsnetze 2/4 Umgewidmete Gasleitungen als Baustein der Wasserstoffnetze

Ergebnisse

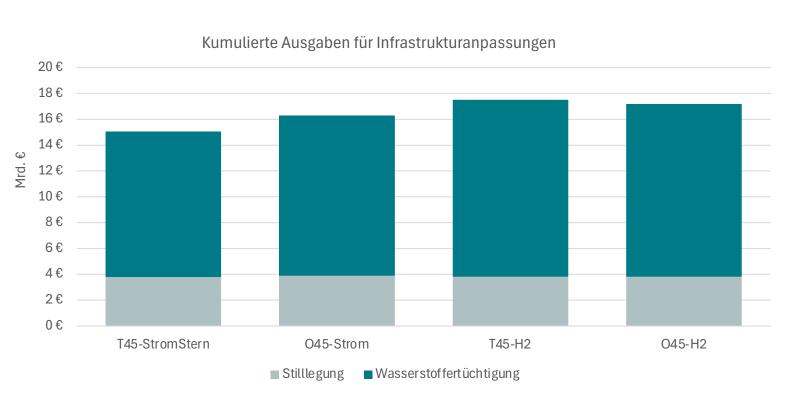
- Umfangreiche Maßnahmen zur Ertüchtigung des Gastransportnetzes auf Wasserstoff
- Weiterbetrieb für den Methantransport in allen Jahren und Szenarien bis 2045 (parallele Netzstruktur)

Einordnung

- Netztopologien basieren auf gesamteuropäischer Optimierung
- Genauere Prüfung der Stilllegungs- und Ertüchtigungsmaßnahmen in der Umsetzung notwendig
- Starker Methanrückgang nach 2030 ermöglicht hohe Umwidmungsquote (etwa 90%)

Schlussfolgerung

 Stilllegungen und Wasserstoffertüchtigung erfordern frühzeitige Planung- und Finanzierungsregelungen



Analyse Fernleitungsnetze 3/4 Wasserstoffnetz gegenüber dem Methannetz deutlich reduziert

Ergebnisse

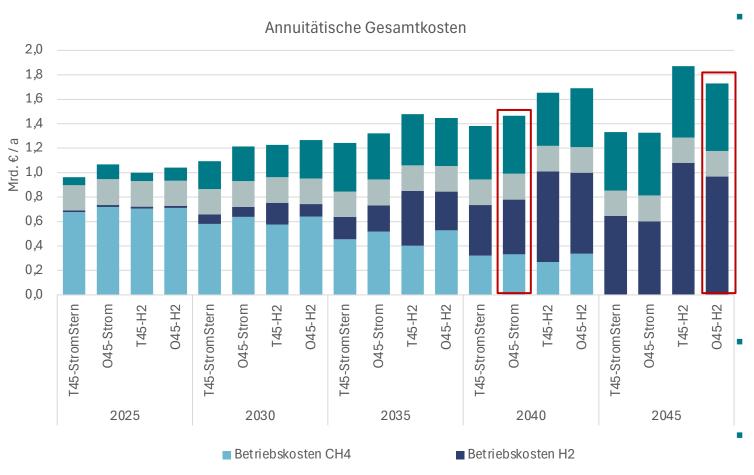
- Kumulierte Ausgaben für Infrastrukturanpassungen in allen Szenarien zwischen ca. 15 und 18 Mrd. € auf Transportnetzebene
- Vergleichsweise etwas h\u00f6here Kosten im O45-H2-Szenario aufgrund der gr\u00f6\u00dferen Anzahl angeschlossener Regionen
- Stilllegungsausgaben bei ca. 4 Mrd. €

Einordnung

 Mindestens 70 % der Gesamtausgaben entfallen auf Wasserstoffertüchtigung

Schlussfolgerung

Finanzierungsbedarf mindestens 15
 Mrd. € (einschließlich Stilllegungen)



Analyse Fernleitungsnetze 4/4 Betriebskosten stark von H2-Transportvolumen abhängig

Ergebnisse

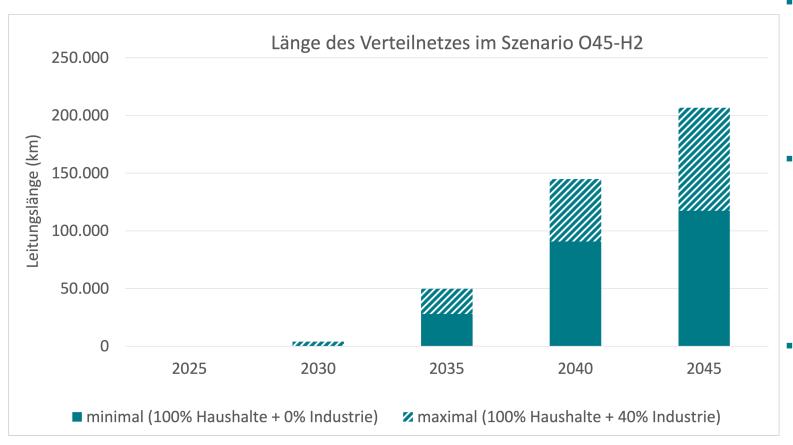
- Betriebskosten bestehen aus:
 - Fixkosten für die Netzinfrastruktur abhängig von Netzlängen
 - Variablen Betriebskosten abhängig von Transportmengen
- Annuitätische Gesamtkosten erreichen den Höhepunkt in O45-Strom im Jahr 2040 aufgrund des gleichzeitigen Betriebs des Wasserstoff- und Methannetze
- In O45-H2 sind die annuitätischen Gesamtkosten am höchsten im Jahr 2045 aufgrund des deutlich höheren Transportvolumens für H2

Einordnung

 Betriebskosten des Methannetzes rückläufig, während die des Wasserstoffnetzes zunehmend sind

Schlussfolgerung

 Finanzierungs- und Regulierungsfragen für die Wasserstoffertüchtigung frühzeitig klären



Analyse Verteilungsnetze 1/3 Umwidmung der Verteilnetze bei Einsatz von H2 im Wärmesektor

Ergebnisse

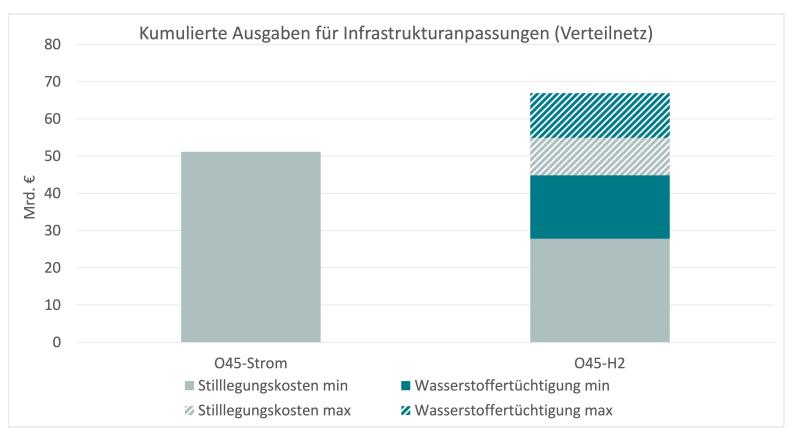
- Erheblicher Verteilnetzbedarf bei dem Einsatz von Wasserstoff im Wärmesektor
- Anbindung der Industrie über das Verteilnetz führt zu erheblichem Mehrbedarf an Leitungen

Einordnung

- Angenommen wurde eine ausschließliche Umwidmung von Verteilnetzleitungen
- Sinkende Verteilnetzlängen für Erdgas und vollständiger Rückbau bis 2045
- Keine Ausfallrechnungen für Erdgasverteilnetzleitungen

Schlussfolgerung

- Für eine Versorgung der Haushalte mit Wasserstoff bedarf es einer umfassenden Verteilnetzinfrastruktur
- Die Anbindung weiterer Industriestandorte vergrößert diesen Bedarf signifikant



Analyse Verteilungsnetze 2/3 Stilllegungskosten der Verteilnetze betragen bis zu 50 Mrd. €

Ergebnisse

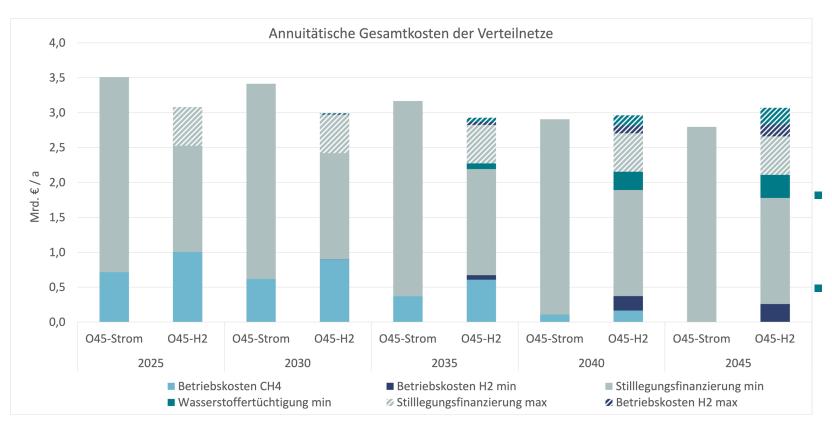
- Kumulierte Ausgaben für Infrastrukturanpassungen auf Verteilnetzebene zwischen 50 Mrd. € und 70 Mrd. €
- Vergleichsweise h\u00f6here Kosten im O45-H2-Szenario aufgrund des Aufbaus eines Verteilnetzes f\u00fcr Wasserstoff
- Stilllegungsausgaben für Erdgasverteilnetze erheblich teurer als im Transportnetz

Einordnung

 Aufbau eines Verteilnetzes für Wasserstoff kostet zwischen 17 Mrd. € und 30 Mrd. €

Schlussfolgerung

 Finanzierungsbedarf für Verteilnetzumstellung erheblich höher als für Transportnetze



Analyse Verteilungsnetze 3/3 Annuität der Verteilnetze von erheblicher Bedeutung

Ergebnisse

- Betriebskosten für Wasserstoff hängen von Anschlussgrad der Industrie ab
- Annuitätische Gesamtkosten liegen in beiden O45-Szenarien bei etwa 3 Mrd. € / a

Einordnung

 Größter Anteil der annuitätischen Kosten entfällt auf Stilllegung

Schlussfolgerung

Die annuitätischen
 Gesamtkosten pro Jahr
 übersteigen die der
 Transportnetzinfrastruktur etwa
 um den Faktor 2

Fazit zur Gasnetzentwicklung

- In allen Szenarien ist ein umfangreicher Aufbau eines deutschen Wasserstofftransportnetzes erforderlich und kostenoptimal im Sinne der Optimierung der Kosten des Energieangebots; erheblicher Ausbau erfolgt auch außerhalb von Deutschland.
- Variation des Infrastrukturbedarfs der Szenarien O45-Strom und O45-H2 aufgrund der untersuchten Sensitivitäten im Vergleich zu T45-Strom* und der T45-H2.
- Die Versorgungssicherheit ist für Wasserstoff in allen untersuchten Netznutzungsfällen gewährleistet.
- Bezüglich potenziell unterschiedlicher Entwicklungen des Wasserstoffeinsatzes im Wärmesektor sind die Auswirkungen auf die Transportinfrastrukturen begrenzt.
- Vergleichsweise geringe Unterschiede der Gesamtkosten weisen darauf hin, dass Mehrkosten für robuste und resiliente Netzplanung keine dramatischen Auswirkungen haben.
- Hinsichtlich der Verteilnetzinfrastruktur ist der Leitungsmehrbedarf in O45-H2 gegeben und beeinflusst auch die Gesamtkosten.
- Der weit überwiegende Teil des Wasserstoffnetzes kann bei paralleler Erfüllung der Aufgaben des Erdgastransports aus dem bestehenden Erdgastransportnetz umgewidmet werden. (Ausreichende Verfügbarkeit auch von Import- und Elektrolysekapazitäten sowie Speichern ist hierfür essenziell.).
- Der Anteil der Kosten für die Anpassung der Gastransportinfrastruktur bewegt sich vermutlich im unteren einstelligen Prozentbereich der Gesamtsystemkosten.
- Die Kosten für den Aufbau einer Verteilnetzinfrastuktur für Wasserstoff übersteigen die notwendigen Investitionen in die Transportnetze erheblich.

Herzlichen Dank für Ihre Aufmerksamkeit! ... dann mal los

www.langfristszenarien.de

